New global stability estimates for the Calderón problem in two dimensions

نویسندگان

  • Matteo Santacesaria
  • MATTEO SANTACESARIA
چکیده

We prove a new global stability estimate for the Gel’fandCalderón inverse problem on a two-dimensional bounded domain. Specifically, the inverse boundary value problem for the equation −∆ψ+v ψ = 0 on D is analysed, where v is a smooth real-valued potential of conductivity type defined on a bounded planar domain D. The main feature of this estimate is that it shows that the more a potential is smooth, the more its reconstruction is stable. Furthermore, the stability is proven to depend exponentially on the smoothness, in a sense to be made precise. As a corollary we obtain a similar estimate for the Calderón problem for the electrical impedance tomography.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of the Calderón Problem in Admissible Geometries

In this paper we prove log log type stability estimates for inverse boundary value problems on admissible Riemannian manifolds of dimension n ≥ 3. The stability estimates correspond to the uniqueness results in [13]. These inverse problems arise naturally when studying the anisotropic Calderón problem.

متن کامل

The Calderón Problem with Partial Data on Manifolds and Applications

We consider Calderón’s inverse problem with partial data in dimensions n ≥ 3. If the inaccessible part of the boundary satisfies a (conformal) flatness condition in one direction, we show that this problem reduces to the invertibility of a broken geodesic ray transform. In Euclidean space, sets satisfying the flatness condition include parts of cylindrical sets, conical sets, and surfaces of re...

متن کامل

Dynamical behavior of a stage structured prey-predator model

In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...

متن کامل

Global Uniqueness for the Calderón Problem with Lipschitz Conductivities

We prove uniqueness for the Calderón problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the threeand four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for C1-conductivities and Lipschitz conductivities sufficient...

متن کامل

Recent Progress in the Calderón Problem with Partial Data

We survey recent results on Calderón’s inverse problem with partial data, focusing on three and higher dimensions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011